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On the Matching of Transmission Cavity Stabilized
Microwave Oscillators

KLAUS SCHUNEMANN, MEMBER, IEEE, AND RIZINHARD K.NQCHEL

Abstract—A matching condition is derived for a transmission transmission cavity. Their theory led to very simple and
cavity stabilized microwave oscillator, which takes account for the efficient design formulas which can easily be applied in
power loss in the diode momrting structure. In addition, the power
dissipated in the damping resistor–-which is commonly used in order

practice. The requirement is that the oscillator sees a

to eliminate mode jumping problems--is minimized, thus leading to matched load. which means the input reflection coefficient of

a useful improvement in both output power and loaded Q-factor of the the cavity has to be zero. By further taking the transmission

compound oscillator structure. The effectiveness of the design loss of the cavity into consideration as a design objective, the
procedure is finally demonstrated by applying it to a Gurm oscil~ator input and output coupling coefficients fll and flz can be
realization: at 15 GHz a loaded Q-factor of 6500 could be achieved at

the sacrifice of only 2.4-dB overall power loss.
calculated. The obtainable stabilization factor is then

related to the transmission loss in a simple and evident way.

The investigation of [2] leaves two problems unsolved:
L lN7~R0fxJCT10N

1) NO quantitative instruction has been given concerning

c OUPLING an oscillator to a transmission cavity of a the amount of damping required. Following the intentions

high unloaded Q-factor is well known as an efficient and of [2] (matching of the oscillator by putting the reflection

simple means of improving the frequency stability. The coefficient of the cavity input to zero). one can suppose,

general features involved in this method have first been however, that the damping resistor should present zero

discussed by Shelton [1]. who introduced a damping resistor reflection at both ports of the intermediate transmission line.

in the middle of the half-wavelength long intermediate 2) It is not clear whether or not the neglect of the circuit
transmission line in order to suppress unwanted modes of losses of the diode mounting structure is justified.
oscillation. The coupling line between original oscillator

In this present work emphasis is therefore paid to the
(diode mounting structure) and stabilizing cavity can other- solutlon of these problems,

wise operate as a resonator which introduces two additional

potential modes of oscillation.
[n a recent study of Nagano and Ohnaka [3] a transmis-

A theory of cavity stabilization of a microwave oscillator
siort cavity stabilized oscillator has been presented which

has been given by Ashley and Searles [2] who for the first
violates the design principles of [2] in that the input im-

time developed an IIvlPATT diode oscillator stabilized by a
pedance at the diode port of the cavity has not been matched

to the characteristic impedance of the intermediate trans-

mission line. Instead. it has been adiusted for maximum
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device is matched, i.e., that the generated power is max-

imized by properly choosing the physical dimensions of the

diode mounting structure. Adjusting the diode mount needs

not put any restriction on the magnitude of the cavity input

impedance.

Furthermore, the circuit losses of the diode mounting

structure (which will henceforth be called the main cavity)

have been neglected in the investigations in [3]. Disposition

and evaluation of the analysis of this circuit do not allow to

draw generalized conclusions concerning the attainable

loaded Q-factor or the necessary amount of damping. On the

contrary; as the power loss in the damping resistor of the

oscillator of [3] amounts to 2 dB, one may suppose that

the oscillator performance is not favorable in general.

Hence, general design formulas will be derived in the

following, as, e.g., a relation between the loaded Q-factor and

the power loss in the stabilizing cavity (or the output power,

respectively), or the minimum amount of damping, which

still guarantees a single-mode operation. This is done by

development and analysis of a general equivalent network.

II. ELABORATION OF A GENERAL EQUIVALENT CIRCUIT

A cavity stabilized oscillator consists of three compon-

ents: the diode mounting structure, the high-Q cavity, and

the coupling line with damping resistor. Each component is

a resonant structure, which shall be modeled by a lumped

element RLC circuit over a limited frequency range. A

general equivalent network can be introduced in two ways:

first, by carefully modeling the single parts of the compound

structure starting from their physical meaning, and, second,

in a purely formalistic manner. The latter method will be

used now.

The active device is described by its admittance y~(fi). In

the following, admittances are normalized to the character-

istic conductance G~ of the transmission line which is

adjacent to the output port of the transmission cavity and

forms the load of the oscillator. Normalized quantities are

indicated by small letters.

For simplicity, the admittance of the active device is

henceforth assumed to be real: y~(fi) - g~(fi). It only

depends on the RF-voltage amplitude ;, because the
frequency dependence is weak compared with that of the

passive circuitry and might thus be neglected. If the active

device is driven in a parallel resonant mode, the general

equivalent network of a transmission cavity stabilized oscil-

lator is as given in Fig. 1. The H-circuit with unloaded

Q-factor Q~ and loss conductance gH represents the diode

mounting structure (main cavity), the C-circuit with Q-

factor Q= and conductance gC the stabilizing transmission

cavity and load. Here g. includes both the loss conductance
of the high-Q cavity and the load conductance g~ = 1.

Denoting the cavity input and output coupling coefficients

by fll and fl,, respectively, one can write QC= QO/(l + P,)

and g, = l/fl~ = (1 + f?2)/~1. QO means the unloaded Q-

factor of the stabilizing cavity.

According to [1], the intermediate transmission line intro-

duces a further resonant circuit which has to be damped by a

damping resistor. This is modeled by the series resonant

1 QH X ‘t 9~* Qc

[1
9~ 9~ 9C

1.

f
x

Fig 1. Equivalent circuit for transmission cavity stabilized oscillators.
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Fig, 2, Schematic cross section of the transmission cavity stabilized

oscillator.

circuit of Q-factor Qt and conductance gD~. In g~~ two

portions are combined. The first part shall be called g, and

means the inherent loss conductance which leads to the

unloaded Q-factor of Q,. The second part is the intentionally

introduced amount of damping, which appears in a series

connection to g, and shall be called g~~. It is noted that Q, is

defined for gL* + co.
If one prefers a derivation of an equivalent network which

rests upon physical considerations, one may proceed as

follows. As an example, the waveguide structure, which

has been used for the measurements, shall be considered.

This oscillator will be described in detail later. It is

schematically sketched in Fig. 2.
The Gunn element is post coupled to a rectangular

waveguide. The post gives rise to some coaxial portion of the

field. Thus the post may be looked at as a coaxial waveguide

as seen from the active device. The characteristic impedance

and electrical length of this coaxial line can be adjusted by

the physical shape of the post. From this point of view the

admittance levels of the active device and of the passive

circuitry may be matched by means of the post which is

driven to act as an impedance inverter (like, for instance, a

quarter wave transformer). The exact equivalent circuit of

the post is actually more complicated [4] and maybe applied

for detailed investigations.
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As seen from the waveguide the post forms nearly a short

circuit. Hence, the waveguide section to the left of the post

may be modeled by a series tuned circuit at the post

terminal, if its electrical length is chosen to be 1~/2 with 1~

the guide wavelength. At the device terminal, however, the

series tuned circuit is looked at through the impedance

inverter as a parallel resonant circuit. Considering the

waveguide section to the right of the post terminal,

the stabilizing cavity is described by a series tuned circuit. In

the detuned open position of the cavity the input impedance

of the intermediate open ended transmission line, which has

an electrical length of 1~/2, too, appears at the post terminal.

The coupling line is, hence, represented in the equivalent

network by a parallel tunecl circuit, which is shunted by the

series tuned circuit of the stabilizing cavity. Looking again

from the active device, the impedance to the right of the post

has to be converted to its clual. At this reference plane, the

intermediate coupling line appears as a series tuned circuit

in series to the parallel tuned circuit which stands for

the stabilizing cavity. Thus the equivalent network of Fig. 1

has been derived.

If the active device is driven in a series resonant mode one

may proceed as done in [3]. The resulting equivalent circuit

is then the dual to that of Fig. 1. The same may be achieved

when the reference plane of the equivalent network is sett led

at the post terminal (i.e., the plane at which the post passes

through the H-plane of the waveguide). Hence, the equiv-

alent circuit of a transmission cavity stabilized oscillator, as

presented in Fig. 1, can be said to be of a general validity in

that it models the essential features of the compound

oscillator structure.

111. ANALYSIS OF OSCILLATOR PERFORMANCE

An analysis of the circuit of Fig. 1 is set up in the

admittance plane as usual. Here any operating point is given

by the intersection of the “device line” – yD(ti) with the “load

line” y~(co) according to

y~(fi) + ~.(o)= O. (1)

In (1) yr.(co) means the frequency-dependent load admit-

tance as seen by the active device. If plotted in the admit-

tance plane (or if sketched in the Smith Chart), the load line

shows one or two loops depending on the relative values of

both, the unloaded Q-factors, and the natural frequencies of

the various resonant circuits. As has been stated in [1], the

loss conductance g~~ must be small enough that a loop

in the load line due to the resonant circuit of the inter-

mediate transmission line will disappear. An inspection of

the equivalent network of Fig. 1 helps to formulate this

statement quantitatively showing that

must be fulfilled when the stabilizing cavity is in a detuned

short position. In (2) bI{ means the susceptance of the

H-circuit, b, that of the t-circuit, coff and m, being the natural

frequencies of these circuits, respectively. (The detrimental

consequences of a violation of Of, = co,have been discussed

tl
lm “f

I
I

$’
p,,(.)

Fig. 3, Plots of load line yI(0) and device line – YD(~)in the adrnittmce
plane. ; is RF-voltage amplitude. Solid line: admittance locus with
susceptance gap, Broken line: admittance locus for minimized damping.

in [2]. ) Approximating the susceptances near the natural

frequencies by

(0 — co~
b~ = 2gFI Q,, —– ;

(DH

b,= –2 “g:A--Q,~
(g, + 9~A)2

(3)

and inserting into (2) yields
—

gk~ L ~=Qt “ gcrit (4)

Here use was made of g, > g~~. (In practice, the inherent

losses of the intermediate transmission line are small

compared with the added amount of damping.)

The influence of the damping resistor on the shape of the

load line is illustrated in Fig. 3, where the natural frequency

of the stabilizing cavity WCis tuned to {DC= co~ = cot. When

9DA is chosen according to (4) (gh’ x gCriL,solid line in Fig.
3), a small susceptance gap appears in YL(0). There exists,

hence, a frequency margin, where only one intersection

between load and device line is possible. This is at the nearly

circular portion of yI,(co), where the admittance changes are

predominantly caused by the stabilizing cavity. If one wants

to increase the frequency range of a single-mode operation,

ordinarily the damping is increased (g”A decreased). The

susceptance gap then widens. This method has, e.g., been

applied in [3]. As a disadvantage, the increased damping

leads to a degradation of both circuit efficiency and attain-

able frequency stability [5].

On the other hand, the required amount of damping may

be chosen in a more favorable manner. The basic idea is that

a susceptance gap will not, in general, be required for a

single-mode operation. The only demand is that the active
device must not provide negative conductance at further

potential operating points. In the example cited above, y,(w)

may then have many intersections with the real axis of Fig. 3,

but only one, where the associated real part of yL(m) is

smaller than the small signal conductance – gD(0). Starting

from the amount of damping as given from (4), a diminution
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of damping (increase of g~~) has a two-fold consequence: 1)

the susceptance gap disappears; 2) the diameter of the loop

in y~(~) due to the stabilizing cavity increases. Hence, y~(co)

takes a pattern as has been schematically drawn by broken

lines in Fig. 3.

YL(@) k restricted by two requirements,

1) The operating point on – g~(fi) must give maximum

power. To obtain this, g~(fi) may be adjusted by the mat-

ching post (see Fig. 2).

2) The cross-over point P must lie to the left of – g~(0) in

Fig. 3 to retain single-mode operation.

In order to evaluate the requirements on y~(w) quantita-

tively and thus, to determine the minimum amount of

damping (maximum g~~), the RF-amplitude dependent

device conductance has to be specified. For reasons of both

generality and simplicity, a van der-Pol-type current vol-

tage characteristic shall be assumed. Then

ductance is described by

9D(fi) = ‘gD(O) + kfiz

with k being a constant. It is well known

power is delivered to a load of

Re y.(uO) = gD(0)/2

with

fiz = gd”)
2k “

the device con-

(5)

that maximum

(6)

(7)

Now the maximum value for the damping conductance

(minimum damping) is calculated by setting the admittance

belonging to the cross-over point P in Fig. 3 equal to the

small signal conductance – gD(0), which can be replaced in

terms of y~(coO) by (6). This yields the maximum value of the

damping conductance gh~ ~~.

j?,=+. (8)
Yc

Equation (8) has been derived for the detuned stabilizing

cavity. The inherent insertion loss of the intermediate

transmission line has again been assumed to be small (g,

large and 2Q, /g, Q~ < fl~, what is fulfilled in practical

oscillator circuits), g~~ ~aX from (8) exceeds gC,i, from (4),
thus minimizing the power loss in the damping resistor.

Provided that the intermediate transmission line is
sufficiently damped according to (8), its resonant circuit

might be neglected in the equivalent network of Fig. 1.

Hence, the general equivalent network of a transmission
cavity stabilized oscillator consists of a parallel resonant

circuit in parallel to the conductance of the active device,

which are both in parallel to the series connection of a

conductance g~~ with the stabilizing parallel resonant

circuit. gD~ should be chosen according to (8). So far, this

ensures single-mode operation only for 00 = UC = COH.Plot-
ting the load line for various amounts of detuning (OC# CO~

shows, however, that the single-valued operation is

preserved due to an increasing rotation and change of shape

of the admittance loop with increasing detuning of the

cavity.

Hence, (8) turns out to be a design formula of general

validity provided that a van der Pol-type characteristic can

be assumed for the active device, with Q~ and Q, usually

ranging in the same order of magnitude (s 1000) for

practical transmission-cavity stabilized oscillators.

A. Mechanical Tuning

When the amount of damping is chosen according to (8),

the consideration of the resonant character of the t-circuit

may be dropped when determining the oscillation fre-

quency. This leads to a formula for the normalized load

admittance which reads

dA

YL(@) = 9H + 9D.4 –
9DA + 9.

1+
()

9CQC 2

gD,4 + 9,

()

gDA 2

9DA + 9,
9HQFf + C/$%

( i

(9)

1+
9CQC 2

L \gDA +%/

In (9) the normalized frequencies fd~ and f2C are approx-

imated by the linear term of a Taylor series expansion:

The oscillation frequency cuO is given by Im VL(COO)= O.

Making use of

(11)

this yields

1+9Q (1gDA ‘Q&

9H .9DA + 9, QH
(.00 = Coc (12)

Olc ~~( gDA \2 Q.”

In the case of COC= (l)H the oscillation frequency equals the

cavity frequency. When COCis mechanically tuned, co. will

gradually differ from COCThe deviation I COO– u, I is,
however, negligibly small for a large QC.The magnitude of

the tunable frequency range depends on load line and device

line as is evident from an inspection of Fig. 3. The admit-

tance loop moves up or down when the cavity frequency is

increased or decreased. The oscillator may be tuned off the

midband frequency (where OJO= OJC= CO1l)as far as there is

still an intersection between —gD(0) and the admittance

loop. The tuning range is of course maximum when g~A is

adjusted to gr)A ~~X,because the diameter of the loop is then

largest. It shall be noted that there will be no hysteresis in the

tuning characteristic COO(OC),as is, e.g., the case if the

oscillator is designed according to [2].
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B. Frequency Stability, Output Power, and Loaded Q

The most important feature of a cavity stabilized oscilla-

tor is its frequency stability, which is usually measured by

the stabilization factor S. S is defined by the ratio of the

stored energy of the stabilized oscillator to that of the

unstabilized one. Hence, S can likewise be written as

the ratio of the loaded Q-factors of the stabilized to

the unstabilized state. Thus the stabilization factor is only a

relative measure of frequency stability because it depends on

the loaded Q-factor of the unstabilized oscillator. Lowering

this Q-factor leads to an increase in S without improving the

absolute value of the frequency stability in any way. Hence,

the loaded Q-factor of the stabilized oscillator is used as an

absolute measure of attained frequency stability. It can be

defined via

QL is maximum at the midband frequency, where

OJJ= (OC= (D[~. Inserting yL(UJo) from (9) with WO= coC

yields

()
2

Q,, + QC & ~?—

Q,= gH gD.4 + gc
(14)

~+& gDA “

gH gDA + gc

The various conductance may be expressed by means of

dissipated powers. Making use of (6) and (7), the maximum

generated power reads

which will be used for a normalizing purpose. Defining g. as

the real part of the admittance right of the port x – x in the

equivalent circuit of Fig. 1, the power pC= PC/P~.. dis-

sipated in the conductance gC reads at midband frequency

Pc
pc. — —x?-- 9“’

P=gen Re .YL(fJo) gD/4 + 9.

(]

gDA 2 1
= 9. (16)

gDA + g, gDA 9.
9E1 +

9DA + 9.

where Re (y~((oo )) has been taken from (9). The normalized

output power pout is defined by

- fl~ f’. ,
‘0”’– 1 + j32 Pge”

(17)

The power losses in the cavity PC, ,Os, ancl in the cliode

mounting structure Pft, 10,, are given by

with
P~ 9H 9H

P ,,. = Re y~(o~o) =
(19)

gDA gc
gff +

gDA + g.

I QH I b ra

9D(t) PT

r-
yL (d Ya Y

Fig, 4. Equivalent circuit for transmission cavity stabilized oscillator

w]th attenuator

gD Negative conductance of active device,

)1. Load admittance.

Ya>Y Input admittances

911 Loss conductance

B, Cavity input resistance.

~. Lia C’ircult elements of the attenuator.

QwQ. Q-factors.

The various powers inserted in the equation for the loaded

Q-factor yield

QL= PFTQH + [Pc – Po.t]Q(). (20)

From (20) it can be seen that QL(p,,,,t) is a straight line with

slope – Q., if fl~ = I/gC = const. This relation shows that

frequency stability can be traded for output power and vice

versa. It allows rapid estimation of the power losses and

Q-factors required for a given loaded Q.

C. Attenuator Instead of Damping Resistor

So far, only a damping resistor has been regarded as a

simple means for avoiding unwanted modes of oscillation.

Realizing such a damping resistor means introducing a

discontinuity yin the middle of the intermediate transmission

line. Following the intentions of [2], one must suppose,

however, that the damping resistor should present zero

reflection at both ports of the intermediate transmission line.

Such a passive device will be called an attenuator in the

following explanation. Using an attenuator instead of a

damping resistor yields an equivalent network as presented

in Fig. 4. The attenuator has been modeled by a T-section,

whose input admittance y.(co,) equals the load y(o),) = gC=

l//?f. (In [2] only the special case g, = 1 had been treated.)

The circuit elements g. and r. of the attenuator are

calculated by specifying the attenuation a as the ratio of the

output to the input voltage and from y. = l/~r:

g.= (1- a’)/(2a/3~) r.= ~~(1 – a)/(1 + a). (21)

The normalized load admittance is now

and yields for the maximum loaded Q-factor at midband

frequency

2

$hrQri+s Qc

QL =
flT

~+9H
bT

(23)
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The output power now reads

a’—
h bT

~“”’=l+p2 1 “

%+9”

Combining (23) and (24) yields

rf

(24)

assumed: the unloaded Q-factor of the stabilizing cavity is

taken as QO = 20000; the unloaded Q-factor QH of the

H-circuit can be determined from the loaded Q-factor of the

unstabilized oscillator and from the loss conductance g~.

Typical values for post-coupled waveguide Gunn oscillators

ar~ g~ = 0.1 and Q~ = 2000, which ire chosen here for the

numerical examples. The power loss in the damping resistor

and in the attenuator is minimized according to (8) and (27).

1 In order to evaluate g&~ ~.. and ~in, numerical values for Q,

IIQL= 9H@z + bT

1
– P..( Qo. (25)

l+gH
~T Z+9H

This is a similar relationship between loaded Q-factor and

output power as for the case of a damping resistor (20).

To ensure single-mode operation a critical attenuation

aerii can be defined similar to the calculation of a critical

damping conductance:

9t

Here g, and Q, mean the loss conductance and the Q-factor,

respectively, of the equivalent circuit of the intermediate

transmission line.

Just as in the case of a damping resistor, the attenuation

loss can be minimized. The minimum value of the attenua-

tion a~,n is obtained in an analogous way:

%9H!&
6T ~

1

-gH-z
a~in =

g,9HQH 3“
(27)

fiT ~
‘9H+Z

Both (26) and (27) have been derived for the stabilizing

cavity detuned. Equation (26) has been calculated with the

requirement. that no additional loop due to the intermediate

coupling line is present in the load line, whereas (27) implies

that such a loop is allowed, but it does not introduce an

additional intersection between load and device line.

IV. DISCUSSION OF THEORETICAL RESULTS

With the results obtained from the analysis, an answer

shall be tried to be given for the following questions.

1) What is the favorable solution for the damping of the

transmission line?

2) What coupling of the stabilizing cavity will yield the

best frequency stability for a given output power and a

certain amount of inherent unwanted main cavity losses?

To this effect, the electrical performance of an oscillator with

damping resistor will be compared to that of an oscillator

with an attenuator. The comparison is made on the basis of

the attainable loaded Q-factor for a given output power

because the Q~ versus pOU,relationship is thought to be the

most important feature of a cavity stabilized oscillator.

The oscillators are described by their equivalent circuits

of Figs. 1 and 4, respectively. In order to evaluate Q~ versus

pOu, ((20) or (25)), some circuit parameters have to be

and gt have to be chosen. Assuming an intermediate trans-

mission line made out of brass, Qt = 3000 and gt = 100 are

thought to be quite reasonable fo~ an oscillation frequency

of 15 GHz.

The loaded Q-factor at co. = (OC= CO}Iis plotted against

the normalized output power in Fig. 5 for both an oscillator

with damping resistor (solid lines) and with attenuator

(broken lines). Cavity input resistance fl~ = l/gC and output

coupling flj are used as parameters. An important result is

that a damping resistor should be preferred as compared to

an attenuator, because it leads to higher Q~-values at the

same output power. As a further result, it is seen that

increasing flz while holding ~T constant yields higher values

of output power but lower values of the loaded Q-factor. On

the other hand, (for flz = const.) both pOu,and Q~ show an

optimum when ~T is increased. The optima, however, lie

close to one another. They are achieved at j’T = 2 (oscillator

with a damping resistor) and at ~r = 3 (oscillator with an

attenuator) in the examples given in Fig. 5. The optimum

value of ~T is independent of flz.

Hence, the following outlines can be stated concerning the

design of transmission cavity stabilized oscillators from the

results shown in Fig. 5.

1) A damping resistor instead of an attenuator should be

used for achieving single-mode operation.

2) Departing from the design formulas in [2], the cavity

input port in general should present a nonzero reflection

coefficient (/3~ + 1) in order to maximize the obtained

loaded-Q for a required amount of output power.

The latter statements shall be illustrated by an extreme

example (see Fig. 5). Utilizing an attenuator and matching

the transmission cavity input port to the coupling line

(fl~ = 1) yields Q~ = 2000 at pout= 0.3, whereas the oPti-
mum Q-factor is Q~ = 9000 in the case of a damping resistor

and a mismatched cavity input port (fl~ = 2) with the same

output power. This improvement in performance is ob-
tained by a somewhat more complicated matching

procedure.
An approximate formula shall be derived for the optimum

flT value. This value is independent of the output power, as

can be seen from Fig. 5. Hence, differentiating Q ~of (20) with

respect to ~~ = l/gC, while holding pOutconstant yields

In the derivation of the above expression pH QH < pc Qc has

been implied. This assumption will be valid in most of

transmission cavity stabilized oscillator configurations with
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Fig. 5. Loaded Q-factor against outpat power of a transmission cavity

stabilized oscillator. gH = 0.1, Q~ = 2000, g,= 100, Q,= 3000,
Qo = 20000. The coupling coefficients ~,,~~ increase in the direction of
the arrows. Solid line: oscillator with damping resistor. Broken line:
oscillator with attenuator.

high stability. In addition, the values for fl~ from (28) are

only approximate because g~~ is assumed in (20) not to

depend on /3~ but to be a constant. This is actually not true,

as can be seen by inspection of (8). On the other hand it is not

difficult to account for the ~rdependence of g~~ in the

differentiation of Qfi In this case the resulting equation for

fl~ ~p, has to be solved numerically. The validity of (28) has
been checked by comparing exact and approximate fl~

values for several sets of parameters (gH, Q~, gc, Q,> Qo)
Hence, (28) can be applied to design transmission cavity

stabilized oscillators.

V, EXPERIMENTAL RESULTS OF A TRANSMISSION CAVITY

STABILIZED GUNN OSCILLATOR

A waveguide-type transmission cavity stabilized Gunn

oscillator has been realized based on the design considera-

tions as discussed above. A schematic cross section of the

compound oscillator structure is shown in Fig. 2. The Gunn
element (DGB 6839 F, Alpha Industries, output power 400

mW at 1.5 GHz) is post coupled to a full-height RG

9 I-waveguide. A stepped post has been used in order to

increase the number of tuning elements for matching the

active device to the load. The main cavity is formed by the

short-circuited waveguide section of length 1~, which is

about J,~/2 long at the highest operating frequency. The

natural frequency of the main cavity is adjusted by a tuning

screw, which penetrates into the cavity from the H-plane of

the waveguide. Its position is chosen halfway between post

and short-circuited waveguide port. A TEO ~~-mode circular

waveguide cavity is used for stabilization. Its unloaded

Q-factor has been measured at 15 GHztobe27000. The

length lZ of the intermediate transmission line has exper-

imentally been found to be about 2~/2. The damping resistor

is located halfway between diode mount and input port of

the stabilizing cavity. It consists of a tuning screw from

resistive material (“EM-Airon” absorbing material, Dielec-

tric Communications, Electronautics Department, Little-

ton, MA), which is mounted in a corner of the rectangular

waveguide in such a way, that it travels in a direction

parallel to the E-field.

In order to design a cavity stabilized oscillator the

following procedure may be applied, First, the main cavity

loss and Q-factor Q~ have to be determined for the unstab-

ilized oscillator (i.e., with the stabilizing cavity removed).

This may be done by standard network analyzer techniques

or by the procedure proposed in [6]. In addition, Qt and gf of

the intermediate transmission line must be specified. They

can be determined through standing wave measurements

with the stabilizing cavity detuned. Then g~A and fl = can be

calculated by solving (4) and (28) if an admittance locus with

gap is desired, or from (8) and (28) if the damping resistor
loss shall be minimized.

In order to compare the two potential solutions for .g~~

and fl~, various dissipated powers have been calculated and

plotted versus g~ in Fig. 6. pDA means the normalized power
which is dissipated in gn~. Also shown is the optimum cavity

input coupling ~~. Comparing the results for the admittance

locus with susceptance gap (Fig. 6(a)) to those for minimized

damping (Fig. 6(b)), shows that in the latter case less power

is dissipated in the main cavity, whereas the power loss in the

damping resistor is nearly the same for both cases. Hence,

more power is available at the stabilizing cavity if the

damping resistor has been minimized. This additional

power may be utilized to improve the frequency stability by

dissipating it in the cavity or enlarging the output power.

Continuing the design procedure the calculated ~~is then

realized by the input resistance of a quarter wave transfor-

mer whose output port is connected to a matched load. This

artificial load must be coupled to the main cavity with

intermediate coupling line at that plane, where the input

coupling hole of the stabilizing cavity will be located in the

final oscillator assembly. The active device is then matched

to deliver maximum power to the load. The adjustment is

done by a proper selection of the physical dimensions of the

post. In addition, the damping resistor is tuned to achieve

single-mode operation. (The resonant frequencies of both
main cavity and coupling line must of course be set such that

the desired point of operation is met.)

The actual output power is usually known from the

specifications, so that the amount of power which can be

sacrificed in the stabilizing cavity is given from the maxi-

mum available power of a Gunn element minus the desired
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Fig. 7. Measured load line (solid] and assumed device line (broken) of a
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Fig. 6. Various powers of the oscillator. (a) With susceptance gap.
(b) With minimized damping versus loss conductance of the main cavity.

output power. The cavity coupling coefficients B ~and ~z can

then be calculated to meet these power requirements. The

artificial load can thus be replaced by the stabilizing cavity.

The various g- and Q-parameters of the compound oscil-

lator structure, which has been described above, have been

taken as already cited above for the numerical examples of

the theoretical investigations (g~ = 0.1, Q~ = 2000,

g, = 100, Q, = 3000). The unloaded Q-factor of the stabiliz-
ing cavity of 20000 (which is realistic for a TEO ~~-mode

cavity) has only been replaced by QO = 27000 for the

TEO lz-mode cavity which has been used in practice.
A trial oscillator has been realized at 15 GHz with a cavity

input resistance of& = 2. Replacing the Gunn element by a

50-f2 coaxial line the input admittance at the diode port (i.e.,

the load line) has been displayed by standard network

analyzer swept frequency techniques. The results are il-

lustrated in Fig, 7, where only a section of a Smith chart is

shown.

The admittance locus for the case without damping

resistor and with the stabilizing cavity tuned to resonance is

damping, stabilizing cavity detuned. (c) With darnpl~gl stabilizing

cavity detuned. (d) With damping and stabilizing cavity tuned to reson-
ance. (e) With stightly detuned stabilizing cavity. (f) With susceptance
gap.

shown in Fig. 7(a). No single-mode operation is obviously

possible. The interaction of the main cavity and the resonant

intermediate transmission line become obvious when the

stabilizing cavity is detuned. The corresponding load line is

shown in Fig. 7(b). When a damping resistor is now

provided, the diameter of the admittance loop due to the

intermediate transmission line decreases. This is shown in

Fig. 7(c) with a damping resistor according to (8). Tuning

then the stabilizing cavity to resonance yields single-mode

operation (Fig. 7(d)) even if~, differs from~~{ = J (Fig. 7(e)).

The admittance locus of Fig. 7(f) has been measured for an

increased damping according to (4), what leads to a suscep-

tance gap.

Best results were obtained with a circuit arrangement

which yields the load line of Fig. 7(d). An examp~e of the

mechanical tuning characteristic for this case is given in Fig.

8. The oscillator can be tuned over a 600-MHz bandwidth

without showing any hysteresis. Maximum output power is

23.6 dBm with 26 dBm avaiIable from the Gunn element.

The loaded Q-factor of the oscillator amounted to

Q. H 6500. In the case of a susceptance gap according to Fig

7(f) the output power was adjusted to remain constant. Now

a Q~ of 4600 could be measured. The performance data of the

oscillator with minimized damping are listed in Table I.

VI. CONCLUSION

Design formulas are derived for transmission cavity stab-

ilized oscillators which take the circuit losses in the diode

mounting structure and in the damping resistor into

account. The formulas inciude a relation between the loaded

Q-factor and the power Ioss in the stabilizing cavity (or the

output power, respectively), an expression for the minimum

amount of damping which still guarantees single-mode

operation, and an approximate formula for the optimum

input conductance of the stabilizing cavity. The theoretical

results were applied to a trial cavity stabilized oscillator. At

15 GHz a loaded Q-factor of about 6500 was obtained with

an overall power loss of about 2.4 dB.
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Fig. 8. Mechanical tuning characteristics

TABLE I
PERFORMANCE DATA OF A TRANSMISSION CAVITY STABILIZED

GUNN OSCILLATOR

Frequency 15 GHz

Output power 23.6 dBm

DC voltage 8V

OC current 980 mA

C7rcu1t efficiency (~t) 0.5B

~en

Loaded-Q QL ~6500

Mechanically tunable bandwidth (NHz) 600 2 4%

81
2.8

62
7.9

‘T
2.08

Q. 27000

Pushl ng 200 ~
v

The theory presented here exceeds that in [2], mainly by

accounting for the diode mounting structure and its asso-

ciated circuit losses. This leads to the tuning condition

P, # 1 which enhances both loaded Q-factor and output
power. As stated in the investigations of [6] the circuit

conductance g* can absorb a substantial part of the output

power. The circuit losses are found to range between 0.5 and

3 dB of the generated power, the higher values being valid for

coaxial or MIC arrangements. Even losses of 0.5 dB can

considerably influence the optimum tuning, as can be seen

from the results of Fig. 5. Hence, taking the circuit losses into

account leads to an improved design.

NOMENCLATURE

1, Guide wavelength.

PI Input coupling of transmission cavity.

P2 Output coupling of transmission cavity.

4

pT=; Input resistance of transmission cavity.

~T opt Optimum input resistance of transmission

cavity.

QH Unloaded Q of main cavity.

Q,

Qo
Qc=1+B2

Qo

Q~

0)

coo = 27cfo

u~

04
coc= 2njc

!i2H

Q~

G~

9L

9T

d)A

9DA

9cr1t

9bA ma.

(?H

9C

9.7.
fi

YD

9D

YL

bH

bt

a

UCrit

amin

P gen

PH

PDA

P.

P., 10,,

Pout

[1]

[2]

[3]

[4]

[5]

[6]
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Unloaded Q of equivalent circuit of coupling

line.

Loaded Q of transmission cavity.

Unloaded Q of transmission cavity.

Loaded Q of oscillator.

Angular frequency.

Oscillation frequency.

Resonant frequency of main cavity,

Resonant frequency of coupling line,

Resonant frequency of stabilizing cavity.

Normalized resonant frequency ot” main

cavity.

Normalized resonant frequency of stabilizing

cavity.

Load conductance.

Normalized load conductance.

Loss conductance of coupling line.

Intentionally introduced damping.

Damping conductance.

Damping conductance for impedance locus

with gap.

Minimized damping conductance.

Loss conductance of main cavity.

Input conductance of stabilizing cavity.

Circuit elements of the attenuator.

Voltage amplitude.

Diode admittance.

Diode conductance.

Load admittance.

Susceptance of main cavity.

Susceptance of coupling line.

Attenuation.

Attenuation for admittance locus with gap.

Minimum attenuation.

Generated power.

Main cavity loss.

Damping resistor loss.

Input power to transmission cavity.

Power loss of transmission cavity.

Output power.
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